OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..434
FORMULA
From G. C. Greubel, Jun 26 2018: (Start)
a(n) = 11^n * Hermite(n,5/11).
E.g.f.: exp(10*x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
a(n) = 10*a(n-1) - 242*(n-1)*a(n-2) for n>1. - Vincenzo Librandi, Jun 27 2018 [corrected by Georg Fischer, Dec 23 2019]
MATHEMATICA
Numerator[Table[HermiteH[n, 5/11], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
Table[11^n*HermiteH[n, 5/11], {n, 0, 30}] (* G. C. Greubel, Jun 26 2018 *)
RecurrenceTable[{a[n] == 10*a[n-1] - 242*(n-1)*a[n-2], a[0]==1, a[1]==10}, a, {n, 0, 30}] (* Georg Fischer, Dec 23 2019 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 5/11)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(10/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 26 2018
(Magma) I:=[1, 10]; [n le 2 select I[n] else 10*Self(n-1)-242*(n-2)*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jun 27 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved