login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159282 Denominator of the rational coefficient in the main term in the dynamical analog of Mertens's theorem for a full n-dimensional shift, n >= 2. 2
6, 12, 1620, 2160, 2551500, 3061800, 33756345000, 38578680000, 4060381958325000, 4511535509250000, 3168740859543387253125000, 3456808210410967912500000, 34159303730702924635072148437500 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
a(n) for n >= 2 may be defined as follows. For a full n-dimensional shift, let M(N) = Sum_{L} O(L)/exp(h[L]), where the sum is over subgroups L of finite index in Z^n, O(L) is the number of points with stabilizer L, and exp(h) is the number of symbols.
Then M(N) is asymptotic to a rational times a power of Pi times a product of values of the zeta function at odd integers, and a(n) is the denominator of that rational.
LINKS
R. Miles and T. Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc. 137 (2009), 1499-1507.
FORMULA
By Perron's formula, M(N) = residue(zeta(z+1) * ... * zeta(z-n+2) * N^z, z=n-1) = (b(n)/a(n)) * N^(d-1) * Pi^(floor(n/2)*(floor(n/2)+1)) * Product_{j=1..floor((n-1)/2)} zeta(2*j+1), where b(n) = A159283(n).
EXAMPLE
For n = 3, using the formula in terms of residues, we have residue(zeta(z-1) * zeta(z) * zeta(z+1) * N^z/z, z=2) = (1/12) * zeta(3) * Pi^2 * N^2, so a(3) = 12 (and A159283(3) = 1). [Because A159283(n) = 1 for n = 2..11, these ten values are not listed in the OEIS.]
MAPLE
# The following program generates an expression from which denominator a(n) can be read off:
f:=n->residue(product(Zeta(z-j), j=-1..(n-2))*N^z/z, z=n-1):
seq(f(n), n=2..30);
MATHEMATICA
Denominator[Table[Residue[Product[Zeta[z - j], {j, -1, n-2}]/z, {z, n-1}], {n, 2, 14}]] (* Vaclav Kotesovec, Sep 05 2019 *)
CROSSREFS
This is the denominator of a rational sequence whose numerator is A159283.
Sequence in context: A259130 A032511 A036900 * A202383 A216423 A229336
KEYWORD
easy,frac,nonn
AUTHOR
Thomas Ward, Apr 08 2009
EXTENSIONS
Various sections edited by Petros Hadjicostas, Feb 20 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 12:27 EDT 2024. Contains 371912 sequences. (Running on oeis4.)