login
A159277
Ways to write the identity as a product of n 3-cycles in symmetric group S_4.
0
1, 0, 8, 32, 384, 2560, 22528, 172032, 1409024, 11141120, 89653248, 715128832, 5729419264, 45801799680, 366548615168, 2931852050432, 23456963887104, 187647121162240, 1501211329036288, 12009553193336832, 96076975302508544
OFFSET
0,3
FORMULA
a(n+1) = (2/3)*(-1)^n*((-8)^n-4^n).
O.g.f.: 1 - 8*x^2/(32*x^2+4*x-1).
a(n) = 8 * A091904(n-1). - R. J. Mathar, Jun 28 2009
CROSSREFS
Cf. A091904.
Sequence in context: A208824 A378167 A034193 * A214539 A140789 A120781
KEYWORD
easy,nonn
AUTHOR
Jacob A. Siehler, Apr 07 2009
EXTENSIONS
Offset corrected by R. J. Mathar, Jun 28 2009
Offset changed back and a(0) = 1 prepended by Andrey Zabolotskiy, Feb 21 2024
STATUS
approved