

A159195


Let S_0 = [1]; for n>0 let S_n be obtained from S_{n1} by applying the morphism t > t1,t,t+1; sequence gives limiting value of S_{2n+1} as n > oo.


0



0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..104.


EXAMPLE

S_0 = [1]
S_1 = [0,1,2]
S_2 = [1,0,1,0,1,2,1,2,3]
S_3 = [0,1,2,1,0,1,0,1,2,1,0,1,0,1,2,1,2,3,0,1,2,1,2,3,2,3,4]
etc.


MATHEMATICA

Nest[ Flatten[ # /. a_Integer > {Abs[a  1], a, a + 1}] &, {1}, 5]


CROSSREFS

Sequence in context: A175599 A179759 A257260 * A265859 A271420 A099313
Adjacent sequences: A159192 A159193 A159194 * A159196 A159197 A159198


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Apr 05 2009


EXTENSIONS

Edited by N. J. A. Sloane, Apr 07 2009


STATUS

approved



