login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159192 Number of n-colorings of the Brinkmann graph. 2
0, 0, 0, 0, 17788848, 36105677160, 9840227891760, 838876379282760, 33316659511111200, 770358326829901488, 11901952345453621920, 134595078267062009520, 1187095862662143754320, 8549491024060638451800, 52035271347355128360528, 274779269587463677316280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Brinkmann graph is a quartic graph on 21 vertices and 42 edges.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Weisstein, Eric W. "Brinkmann Graph".

Weisstein, Eric W. "Chromatic Polynomial".

Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.

FORMULA

a(n) = n^21 -42*n^20 + ... (see Maple program).

MAPLE

a:= n-> n^21 -42*n^20 +861*n^19 -11480*n^18 +111881*n^17 -848708*n^16 +5207711*n^15 -26500254*n^14 +113675219*n^13 -415278052*n^12 +1299042255*n^11 -3483798283*n^10 +7987607279*n^9 -15547364853*n^8 +25384350310*n^7 -34133692383*n^6 +36783818141*n^5 -30480167403*n^4 +18168142566*n^3 -6896700738*n^2 +1242405972*n: seq(a(n), n=0..20);

CROSSREFS

Sequence in context: A032749 A235848 A250981 * A154875 A015353 A083619

Adjacent sequences:  A159189 A159190 A159191 * A159193 A159194 A159195

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 20:16 EDT 2015. Contains 261164 sequences.