login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159192 Number of n-colorings of the Brinkmann graph. 2
0, 0, 0, 0, 17788848, 36105677160, 9840227891760, 838876379282760, 33316659511111200, 770358326829901488, 11901952345453621920, 134595078267062009520, 1187095862662143754320, 8549491024060638451800, 52035271347355128360528, 274779269587463677316280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Brinkmann graph is a quartic graph on 21 vertices and 42 edges.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Weisstein, Eric W. "Brinkmann Graph".

Weisstein, Eric W. "Chromatic Polynomial".

Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.

FORMULA

a(n) = n^21 -42*n^20 + ... (see Maple program).

MAPLE

a:= n-> n^21 -42*n^20 +861*n^19 -11480*n^18 +111881*n^17 -848708*n^16 +5207711*n^15 -26500254*n^14 +113675219*n^13 -415278052*n^12 +1299042255*n^11 -3483798283*n^10 +7987607279*n^9 -15547364853*n^8 +25384350310*n^7 -34133692383*n^6 +36783818141*n^5 -30480167403*n^4 +18168142566*n^3 -6896700738*n^2 +1242405972*n: seq (a(n), n=0..20);

CROSSREFS

Sequence in context: A183269 A032749 A235848 * A154875 A015353 A083619

Adjacent sequences:  A159189 A159190 A159191 * A159193 A159194 A159195

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 08:09 EDT 2014. Contains 246187 sequences.