This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159191 Number of n-colorings of the Robertson graph. 2
 0, 0, 0, 24, 3490848, 3501104400, 564523119840, 31643453033640, 886834653776064, 15220684846368288, 181298924180884800, 1627952400490177080, 11672280987833510880, 69664869701930893104, 357038627052783076128, 1609181428647593728200, 6498071673405936462720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The Robertson graph is the unique (4,5) cage: the quartic graph on 19 vertices (so 38 edges) with girth 5. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Weisstein, Eric W. "Robertson Graph". Weisstein, Eric W. "Chromatic Polynomial". Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001. FORMULA a(n) = n^19 -38*n^18 + ... (see Maple program). MAPLE a:= n-> n^19 -38*n^18 +703*n^17 -8436*n^16 +73761*n^15 -500004*n^14 +2727105*n^13 -12246808*n^12 +45913333*n^11 -144701057*n^10 +383839223*n^9 -853388854*n^8 +1574465385*n^7 -2370057775*n^6 +2835163369*n^5 -2587310804*n^4 +1685281636*n^3 -693467820*n^2 +134217080*n: seq(a(n), n=0..20); CROSSREFS The adjacency lists of the Robertson graph are included in A184945. Cf. A115400, A140986, A157959, A157991, A157992, A157993, A158343, A158344, A158346, A158347, A158348, A158760, A158792, A158904, A159042, A159055, A159056, A159192, A159299, A166964, A173705, A173710. Sequence in context: A319977 A268505 A172734 * A013820 A294326 A255322 Adjacent sequences:  A159188 A159189 A159190 * A159192 A159193 A159194 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 11:52 EST 2018. Contains 318148 sequences. (Running on oeis4.)