login
A159080
Primes p such that p^3 - p^2 - p - 6 is also prime.
0
5, 7, 11, 19, 31, 47, 53, 59, 67, 73, 79, 107, 149, 173, 191, 193, 233, 241, 317, 353, 383, 397, 457, 691, 739, 823, 863, 919, 947, 971, 1019, 1171, 1187, 1229, 1249, 1321, 1361, 1367, 1381, 1409, 1439, 1579, 1601, 1663, 1669, 1747, 1783, 1873, 1907, 1949, 1951
OFFSET
1,1
EXAMPLE
5 is prime and 5^3 - 5^2 - 5 - 6 = 89 is also prime, so 5 is in the list.
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p^3-p^2-p-6], AppendTo[lst, p]], {n, 6!}]; lst
Select[Prime[Range[500]], PrimeQ[#^3-#^2-#-6]&] (* Harvey P. Dale, May 11 2011 *)
PROG
(Magma) [p: p in PrimesUpTo(3000)|IsPrime(p^3-p^2-p-6)] // Vincenzo Librandi, Jan 29 2011
CROSSREFS
Cf. A159079.
Sequence in context: A023235 A118918 A019376 * A349821 A349820 A227770
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by R. J. Mathar, Apr 05 2009
STATUS
approved