This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159046 Dimension of the space of newforms of weight 2 on the subgroup Gamma_1(n). 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 5, 2, 7, 3, 5, 4, 12, 5, 12, 6, 13, 8, 22, 7, 26, 13, 19, 11, 25, 13, 40, 14, 29, 19, 51, 13, 57, 25, 39, 21, 70, 23, 69, 24, 55, 37, 92, 22, 79, 42, 71, 34, 117, 34, 126, 39, 87, 61, 117, 31, 155, 68, 109, 45, 176, 55, 187, 56, 119, 87 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 REFERENCES G. Martin, Dimensions of the spaces of cusp forms and newforms on Gamma_0(N) and Gamma_1(N), J. Number Theory 112 (2005) 298-331. LINKS FORMULA a(n) = A029937(n) - sum a(m)*d(n/m), where the summation is over all divisors 1 < m < n of n and d is the divisor function. Dirichlet convolution of A007247 and A029937. - Michael Somos, May 10 2015 EXAMPLE a(p) = A029937(p) = (p-5)*(p-7)/24 for any prime p>3. G.f. = x^11 + 2*x^13 + x^14 + x^15 + 2*x^16 + 5*x^17 + 2*x^18 + 7*x^19 + ... MATHEMATICA a[ n_] := If[ n < 1, 0, Sum[ DivisorSum[ n/j, MoebiusMu[#] MoebiusMu[n/j/#] &] If[ j < 5, 0, 1 + DivisorSum[ j, #^2 MoebiusMu[ j/#] / 24 - EulerPhi [#] EulerPhi[j/#] / 4 &]], {j, Divisors@n}]]; (* Michael Somos, May 10 2015 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv(n, j, sumdiv(n/j, k, moebius(k) * moebius(n/j/k)) * if( j<5, 0, 1 + sumdiv(j, k, k^2 * moebius(j/k) / 24 - eulerphi(k) * eulerphi(j/k) / 4))))}; /* Michael Somos, May 10 2015 */ CROSSREFS Cf. A007427, A029937, A029938, A127788. Sequence in context: A127568 A263791 A143364 * A029937 A289772 A283615 Adjacent sequences:  A159043 A159044 A159045 * A159047 A159048 A159049 KEYWORD nonn AUTHOR Steven Finch, Apr 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.