login
A159017
Numerator of Hermite(n, 3/8).
3
1, 3, -23, -261, 1425, 37683, -114951, -7579989, 3009057, 1949504355, 4981904649, -608895679653, -3580317475407, 223074988560531, 2158637035450905, -93461683768765173, -1316530828322729919, 43902789604639578819, 847901139421483812393
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 4^n * Hermite(n, 3/8).
E.g.f.: exp(3*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/4)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 3/8], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
Table[4^n*HermiteH[n, 3/8], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/8)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
CROSSREFS
Cf. A159014.
Sequence in context: A318004 A098681 A118790 * A004700 A199544 A302117
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved