login
A159013
Numerator of Hermite(n, 6/7).
1
1, 12, 46, -1800, -35124, 284112, 20620104, 80383392, -13180790640, -221190067008, 8971176540384, 324420384152448, -5777883700704576, -450852976171733760, 1950788120636824704, 641979740755260615168, 4836098351726995067136
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 7^n * Hermite(n, 6/7).
E.g.f.: exp(12*x - 49*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 6/7], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
Table[7^n*HermiteH[n, 6/7], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018~ *)
PROG
(PARI) a(n)=numerator(polhermite(n, 6/7)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(12*x - 49*x^2))) \\ G. C. Greubel, Jul 14 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
CROSSREFS
Sequence in context: A169881 A200669 A197471 * A022281 A244803 A024183
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved