login
Numerator of the integral of x^n times the Cantor function, from 0 to 1.
1

%I #1 Jun 01 2010 03:00:00

%S 1,5,11,233,97,36377,10637,8885119,18040327,107868664309,19821442673,

%T 2657527033463249,412093696402361,28353905269136197727,

%U 57058882710461852501,30872757660805358101602571

%N Numerator of the integral of x^n times the Cantor function, from 0 to 1.

%F I(n) = 1/(2*(n+1)) + 1/(2*3^(n+1)-1) * sum_{i=0}{n-1} (n choose i) 2^(n-i) I(i)

%e I(0) is obviously 1/2 by symmetry.

%p for n from 0 to 20 do CI[n] := 1/(2*(n+1)) + 1/(2*(3^(n+1)-1)) * add(binomial(n,i)*2^(n-i)*CI[i],i=0..n-1); end do;

%Y A095844/A095845 give the integrals of powers of the Cantor function itself.

%Y A159010 gives the corresponding denominators. [From Simon Tatham (anakin(AT)pobox.com), Apr 02 2009]

%K frac,nonn

%O 0,2

%A Simon Tatham (anakin(AT)pobox.com), Apr 02 2009