login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158991 Numerator of Hermite(n, 4/7). 2
1, 8, -34, -1840, -4724, 683488, 7782664, -339629632, -8055944560, 201822075008, 8719919701984, -128026275891968, -10424283645874496, 67164631281958400, 13817854415099775104, 18392961201951276032, -20165102300581059194624, -190160981569308074375168 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

Conjecture: a(n) -8*a(n-1) +98*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014

From G. C. Greubel, Jul 09 2018: (Start)

a(n) = 7^n * Hermite(n, 4/7).

E.g.f.: exp(8*x - 49*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/7)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerator of 1, 8/7, -34/49, -1840/343, -4724/2401, 683488/16807, 7782664/117649...

MAPLE

A158991 := proc(n)

        orthopoly[H](n, 4/7) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 16 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 4/7], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*)

Table[7^n*HermiteH[n, 4/7], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 4/7)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(8/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018

CROSSREFS

Cf. A000420 (denominators)

Sequence in context: A203445 A318244 A280395 * A265161 A303805 A304852

Adjacent sequences:  A158988 A158989 A158990 * A158992 A158993 A158994

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 04:26 EDT 2019. Contains 324183 sequences. (Running on oeis4.)