%I #13 Sep 08 2022 08:45:43
%S 1,4,-82,-1112,19660,514544,-7575224,-332852768,3865192592,
%T 276417340480,-2303430504224,-280102715687296,1362687220804288,
%U 334851542531477248,-396657349178753920,-461002945749901799936,-1260925479706838937344,717808917017018666550272
%N Numerator of Hermite(n, 2/7).
%H G. C. Greubel, <a href="/A158981/b158981.txt">Table of n, a(n) for n = 0..450</a>
%F From _G. C. Greubel_, Jul 10 2018: (Start)
%F a(n) = 7^n * Hermite(n, 2/7).
%F E.g.f.: exp(4*x - 49*x^2).
%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t Numerator[Table[HermiteH[n,2/7],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*)
%t Table[7^n*HermiteH[n, 2/7], {n,0,50}] (* _G. C. Greubel_, Jul 10 2018 *)
%o (PARI) a(n)=numerator(polhermite(n,2/7)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 10 2018
%Y Cf. A158980.
%K sign,frac
%O 0,2
%A _N. J. A. Sloane_, Nov 12 2009