OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 3*a(n-1) + 8*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 10 2018: (Start)
a(n) = 2^n * Hermite(n, 3/4).
E.g.f.: exp(3*x - 4*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/2)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 3/2, 1/4, -45/8, -159/16, 963/32, 9249/64, -18477/128, -573375/256, ...
MAPLE
MATHEMATICA
Numerator[Table[HermiteH[n, 3/4], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
Table[2^n*HermiteH[n, 3/4], {n, 0, 50}] (* G. C. Greubel, Jul 10 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/4)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved