login
A158942
Nonsquares coprime to 10.
1
3, 7, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153, 157, 159, 161, 163
OFFSET
1,1
COMMENTS
Odd primes + odd nonprime integers that have an odd numbers of proper divisors A082686, are the result of a suppression of integers satisfying: 2n (A005843); n^2 (A000290); n^2+n (A002378). Of these, we can suppress the multiples of 5 (A008587).
Decimal expansion of 1/10^(n^2+n) + 1/10^(n^2) + 1/10^(5*n) + 1/10^(2*n) gives a 0 for these integers.
2n + n(n+1) + n^2 = 2n^2 + 3n = A014106.
2n^2 + 3n + 5n = 2n^2 + 8n = 2n(n+4) = A067728 8(8+n) is a perfect square.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range@ 163, ! IntegerQ@ Sqrt@ # && CoprimeQ[#, 10] &] (* Michael De Vlieger, Dec 11 2015 *)
PROG
(PARI) isok(n) = (n % 2) && (n % 5) && (isprime(n) || (numdiv(n) % 2 == 0)); \\ Michel Marcus, Aug 27 2013
(PARI) is(n)=gcd(n, 10)==1 && !issquare(n) \\ Charles R Greathouse IV, Sep 05 2013
CROSSREFS
Intersection of A000037 and A045572.
Sequence in context: A102213 A276283 A377232 * A310192 A138152 A004139
KEYWORD
nonn,easy
AUTHOR
Eric Desbiaux, Mar 31 2009
EXTENSIONS
New name from Charles R Greathouse IV, Sep 05 2013
STATUS
approved