|
|
A158914
|
|
Primes p such that there is a composite c with sigma_2(p)=sigma_2(c).
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
No other terms less than 10^8. The corresponding composite numbers are 6, 40, 136, and 3352. Is this sequence finite? See A158913 for the sequence for sigma_1.
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
MATHEMATICA
|
tp=DivisorSigma[2, Select[Range[4000], PrimeQ]]; tc=DivisorSigma[2, Select[Range[4000], !PrimeQ[ # ]&]]; Sqrt[Intersection[tp, tc]-1]
|
|
CROSSREFS
|
Sequence in context: A009219 A158713 A142185 * A046872 A167860 A152988
Adjacent sequences: A158911 A158912 A158913 * A158915 A158916 A158917
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
T. D. Noe, Mar 30 2009
|
|
STATUS
|
approved
|
|
|
|