OFFSET
0,3
COMMENTS
The Hoffman graph has 16 vertices and 32 edges.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Weisstein, Eric W. "Hoffman Graph".
Weisstein, Eric W. "Chromatic Polynomial".
Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
MAPLE
a:= n-> n^16 -32*n^15 +496*n^14 -4936*n^13 +35268*n^12 -191692*n^11 +819004*n^10 -2801044*n^9 +7728104*n^8 -17178976*n^7 +30442928*n^6 -42072224*n^5 +43650458*n^4 -31857932*n^3 +14483632*n^2 -3053055*n:
seq(a(n), n=0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 29 2009
STATUS
approved