This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158903 Numerator of Hermite(n, 2/3). 0
 1, 4, -2, -152, -500, 8944, 80776, -642848, -12749168, 41573440, 2231658976, 1443416704, -436094810432, -2056157249792, 93821556641920, 893437853515264, -21758068879257344, -344342377329425408, 5280599567735045632, 132689328525674014720, -1275207738062689547264 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..450 FORMULA From G. C. Greubel, Jul 13 2018: (Start) a(n) = 3^n * Hermite(n, 2/3). E.g.f.: exp(4*x - 9*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/3)^(n-2*k)/(k!*(n-2*k)!)). (End) MATHEMATICA Numerator[Table[HermiteH[n, 2/3], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*) Table[3^n*HermiteH[n, 2/3], {n, 0, 30}] (* G. C. Greubel, Jul 13 2018 *) PROG (PARI) a(n)=3^n*polhermite(n, 2/3) \\ Charles R Greathouse IV, Jun 19 2012 (PARI) x='x+O('x^30); Vec(serlaplace(exp(4*x - 9*x^2))) \\ G. C. Greubel, Jul 13 2018 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(4/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 13 2018 CROSSREFS The denominators are A000244. Sequence in context: A266069 A057167 A096683 * A273148 A276342 A152030 Adjacent sequences:  A158900 A158901 A158902 * A158904 A158905 A158906 KEYWORD sign,frac,changed AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 23:45 EDT 2018. Contains 312766 sequences. (Running on oeis4.)