The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158867 Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows. 3

%I

%S 1,5,4,14,14,12,126,108,108,96,594,594,528,528,480,7722,6864,6864,

%T 6240,6240,5760,51480,51480,46800,46800,43200,43200,40320,875160,

%U 795600,795600,734400,734400,685440,685440,645120,7558200,7558200,6976800,6976800,6511680,6511680,6128640,6128640,5806080

%N Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.

%H G. C. Greubel, <a href="/A158867/b158867.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2).

%F T(n, n) = A268363(n). - _G. C. Greubel_, Mar 08 2022

%e Triangle begins as:

%e 1;

%e 5, 4;

%e 14, 14, 12;

%e 126, 108, 108, 96;

%e 594, 594, 528, 528, 480;

%e 7722, 6864, 6864, 6240, 6240, 5760;

%e 51480, 51480, 46800, 46800, 43200, 43200, 40320;

%e 875160, 795600, 795600, 734400, 734400, 685440, 685440, 645120;

%e 7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080;

%t T[n_, k_]:= (2*n+1)!!*2^(1+Floor[n/2]+Floor[k/2]+Floor[(k-1)/2])*Beta[Floor[n/2] +Floor[(k- 1)/2] +2, Floor[(n-1)/2] +Floor[k/2] +2];

%t Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 08 2022 *)

%o (Sage)

%o def A158867(n,k): return (2*n+1).multifactorial(2)*2^(1+(n//2)+(k//2)+((k-1)//2))*beta(2+(n//2)+((k-1)//2), 2+((n-1)//2)+(k//2))

%o flatten([[A158867(n,k) for k in (1..n)] for n in (1..10)]) # _G. C. Greubel_, Mar 08 2022

%Y Cf. A158868, A268363.

%K nonn,tabl

%O 1,2

%A _Roger L. Bagula_, Mar 28 2009

%E Edited by _G. C. Greubel_, Mar 08 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 08:15 EST 2023. Contains 360082 sequences. (Running on oeis4.)