login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158843 G.f.: A(x) = exp( Sum_{n>=1} A001333(n)^n * 2^n*x^n/n ). 1
1, 2, 20, 952, 336112, 742166496, 10043945021760, 814531629739559808, 393150002983518264270592, 1123538097532735360702239462912, 18948231465474675384343860006353603584, 1881331085022567366434813565917484763975526400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to g.f.: exp( Sum_{n>=1} 2*A001333(n)*x^n/n ) = 1/(1-2*x-x^2), which is the g.f. of the Pell numbers A000129 (with offset), where A001333(n) = A000129(n+1) - A000129(n).

LINKS

Table of n, a(n) for n=0..11.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 20*x^2 + 952*x^3 + 336112*x^4 + 742166496*x^5 +...

log(A(x)) = 2*x + 6^2*x^2/2 + 14^3*x^3/3 + 34^4*x^4/4 + 82^5*x^5/5 +...

log(G(x)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...

G(x) = 1 + 2*x + 5*x^2 + 12*x^3 + 29*x^4 + 70*x^5 + 169*x^6 +... (A000129).

PROG

(PARI) {a(n)=local(LD=Vec(2*(1+x)/(1-2*x-x^2 +x*O(x^n)))); polcoeff(exp(sum(m=1, n, LD[m]^m*x^m/m)+x*O(x^n)), n)}

CROSSREFS

Cf. A165937, A000129, A001333.

Sequence in context: A290883 A135757 A301945 * A008793 A015192 A012790

Adjacent sequences:  A158840 A158841 A158842 * A158844 A158845 A158846

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 17:09 EST 2019. Contains 329337 sequences. (Running on oeis4.)