login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals. 24
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Paul D. Hanna, Table of n, a(n), n = 1..1275 (rows 1..50).

FORMULA

G.f. of column n = [g.f. of row n of A158830]/(1-x)^n.

Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). [From Paul D. Hanna, Mar 30 2009]

EXAMPLE

Square array of coefficients in iterations of x*C(x) begins:

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;

1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,11485068,...;

1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,35520498,...;

1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;

1,5,30,195,1330,9380,67844,500619,3755156,28558484,219767968,...;

1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;

1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;

1,8,72,684,6720,67620,693048,7209036,75915708,807845676,...;

1,9,90,945,10230,113190,1273668,14528217,167607066,1952409954,...;

1,10,110,1265,14960,180510,2212188,27454218,344320262,...;

1,11,132,1650,21164,276562,3666520,49181418,666200106,...;

1,12,156,2106,29120,409682,5841836,84218134,1225314662,...;

1,13,182,2639,39130,589680,8999172,138755799,2157976392,...;

1,14,210,3255,51520,827960,13464752,221101608,3660331064,...;

1,15,240,3960,66640,1137640,19640032,342179672,6007747368,...;

1,16,272,4760,84864,1533672,28012464,516105720,9578580504,...; ...

ILLUSTRATE ITERATIONS.

Let G(x) = x*C(x), then the first few iterations of G(x) are:

G(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...

G(G(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...

G(G(G(x))) = x + 3*x^2 + 12*x^3 + 54*x^4 + 260*x^5 +...

G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 +...

...

RELATED TRIANGLES.

The g.f. of column n is [g.f. of row n of A158830]/(1-x)^n

where triangle A158830 begins: 1;

1,0;

2,0,0;

5,1,0,0;

14,10,0,0,0;

42,70,8,0,0,0;

132,424,160,4,0,0,0;

429,2382,1978,250,1,0,0,0;

1430,12804,19508,6276,302,0,0,0,0;

4862,66946,168608,106492,15674,298,0,0,0,0;

16796,343772,1337684,1445208,451948,33148,244,0,0,0,0;

58786,1744314,10003422,16974314,9459090,1614906,61806,162,0,0,0,0;

...

Triangle A158835 transforms one diagonal into the next:

1;

1,1;

4,2,1;

27,11,3,1;

254,94,21,4,1;

3062,1072,217,34,5,1;

45052,15212,2904,412,50,6,1;

783151,257777,47337,6325,695,69,7,1; ...

so that:

A158835 * A158831 = A158832;

A158835 * A158832 = A158833;

A158835 * A158833 = A158834;

where the diagonals start:

A158831 = [1,1,6,54,640,9380,163576,3305484,...];

A158832 = [1,2,12,110,1330,19852,351792,7209036,...];

A158833 = [1,3,20,195,2464,38052,693048,14528217,...];

A158834 = [1,4,30,315,4200,67620,1273668,27454218,...].

MATHEMATICA

nmax = 12;

Clear[row]; row[n_] := row[n] = CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] // Rest;

T[n_, k_] := row[n][[k]];

Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 13 2018, updated Aug 09 2018 *)

PROG

(PARI) {T(n, k)=local(F=serreverse(x-x^2+O(x^(k+2))), G=x); for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}

CROSSREFS

Cf. rows: A000108, A121988, A158826, A158827, A158828; antidiagonal sums: A158829.

Cf. diagonals: A158831, A158832, A158833, A158834.

Cf. related triangles: A158830, A158835, variant: A122888.

Sequence in context: A098474 A153199 A056860 * A247507 A107111 A082037

Adjacent sequences:  A158822 A158823 A158824 * A158826 A158827 A158828

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Mar 28 2009, Mar 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 14:06 EST 2019. Contains 329149 sequences. (Running on oeis4.)