login
A158696
a(n) = Hermite(n, 17).
1
1, 34, 1154, 39100, 1322476, 44651384, 1504922296, 50631541456, 1700403497360, 57003614246944, 1907515621443616, 63715458844144064, 2124360257029138624, 70699077726731255680, 2348535276026105088896, 77870625208539097863424
OFFSET
0,2
COMMENTS
First negative term is a(157). - Georg Fischer, Feb 15 2019
LINKS
FORMULA
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(34*x - x^2).
a(n) = 34*a(n-1) - 2*(n-1)*a(n-2). (End)
MATHEMATICA
Table[HermiteH[n, 17], {n, 0, 50}] (* or *) With[{nmax = 50}, CoefficientList[Series[Exp[34*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(34*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(34*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 17), ", ")) \\ G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A170753 A218736 A248163 * A029547 A091761 A264134
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved