%I #46 Jan 05 2022 13:53:39
%S 1,1,5,55,1073,32671,1431665,85363615,6646603073,654896692351,
%T 79656194515025,11722538113191775,2052949879753739873,
%U 421931472111868912831,100568330857984368195185
%N Expansion of the basic hypergeometric series 1 + (1 - exp(-t)) + (1 - exp(-t))*(1 - exp(-3*t)) + (1 - exp(-t))*(1 - exp(-3*t))*(1 - exp(-5*t)) + ... as a series in t.
%C We appear to get the same sequence by expanding 1 - (1 - exp(t)) + (1 - exp(t))*(1 - exp(2*t)) - (1 - exp(t))*(1 - exp(2*t))*(1 - exp(3*t)) + ... as a series in t. Compare with A079144. For other sequences with generating functions of a similar type see A000364, A000464, A002105 and A002439.
%C From _Peter Bala_, Mar 13 2017: (Start)
%C It appears that the g.f. has two other forms: either F(exp(-t)) where F(q) = Sum_{n >= 0} q^(n+1)*Product_{k = 1..n} 1 - q^(2*k) = q + q^2 + q^3 - q^7 - q^8 - q^10 - q^11 - ... is a g.f. for A003475 or 1/2*G(exp(t)) where G(q) = 1 + Sum_{n >= 0} (-1)^n*q^(n+1)*Product_{k = 1..n} 1 - q^k = 1 + q - q^2 + 2*q^3 - 2*q^4 + q^5 + q^7 - 2*q^8 + ... is a g.f. for A003406. See Zagier, Example 1. (End)
%C From _Peter Bala_, Dec 18 2021: (Start)
%C Conjectures:
%C 1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 16 begins [1, 1, 5, 7, 1, 15, 1, 15, 1, 15, 1, 15, ...] with an apparent pre-period of length 4 and a period of length 2.
%C 2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
%C If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. For example, the expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 21*x^3 + 291*x^4 + 6861*x^5 + 246171*x^6 + 12458901*x^7 + 843915891*x^8 + 73640674461*x^9 + 8041227405771*x^10 + ... appears to have integer coefficients. (End)
%H Vaclav Kotesovec, <a href="/A158690/b158690.txt">Table of n, a(n) for n = 0..170</a>
%H Hsien-Kuei Hwang, and Emma Yu Jin, <a href="https://arxiv.org/abs/1911.06690">Asymptotics and statistics on Fishburn matrices and their generalizations</a>, arXiv:1911.06690 [math.CO], 2019.
%H D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/qmf/fulltext.pdf">Quantum modular forms</a>, Quanta of Maths: Conference in honor of Alain Connes, Clay Mathematics Proceedings 11, AMS and Clay Mathematics Institute 2010, 659-675
%F Basic hypergeometric generating function: 1 + Sum_{n >= 0} Product_{k = 1..n} (1 - exp(2*k-1)*t) = 1 + t + 5*t^2/2! + 55*t^3/3! + ....
%F a(n) ~ 6*sqrt(2) * 12^n * (n!)^2 / Pi^(2*n+2). - _Vaclav Kotesovec_, May 04 2014
%F Conjectural g.f.: G(exp(t)) as a formal power series in t, where G(q) := Sum_{n >= 0} q^(2*n+1) * Product_{k = 1..2*n} (1 - q^k). - _Peter Bala_, May 16 2017
%F E.g.f.: Sum_{n>=0} exp(n*(n+1)/2*x) / Product_{k=0..n} (1 + exp(k*x)). - _Paul D. Hanna_, Oct 14 2020
%e G.f. A(x) = 1 + x + 5*x^2 + 55*x^3 + 1073*x^4 + 32671*x^5 + 1431665*x^6 + ...
%t max = 14; se = Series[1 + Sum[ Product[1 - E^(-(2*k - 1)*t), {k, 1, n}], {n, 1, max}], {t, 0, max}]; CoefficientList[se, t]*Range[0, max]! (* _Jean-François Alcover_, Mar 06 2013 *)
%o (PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, 1-exp(-(2*k-1)*x+x*O(x^n)))), n)} \\ _Paul D. Hanna_, Aug 01 2012
%o (PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, exp(k*x+x*O(x^n))-1)), n)} \\ _Paul D. Hanna_, Aug 01 2012
%Y Cf. A000364, A000464, A002105, A002439, A079144, A158691, A209832, A215066, A003406, A003475.
%K nonn,easy
%O 0,3
%A _Peter Bala_, Mar 24 2009