|
|
A158677
|
|
Period 6: repeat [3, 4, 0, 5, 6, 3].
|
|
2
|
|
|
3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also the decimal expansion of 1135210/333333 or the continued fraction of (81+sqrt(9867))/58.
|
|
LINKS
|
Table of n, a(n) for n=1..105.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
|
|
FORMULA
|
G.f.: x*(3+4*x+5*x^3+6*x^4+3*x^5) / ((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)).
a(n) = a(n-6) for n>6.
a(n) = (1/30)*{7*(n mod 6)+22*[(n+1) mod 6]+2*[(n+2) mod 6]-18*[(n+3) mod 6]+27*[(n+4) mod 6]+2*[(n+5) mod 6]}. [Paolo P. Lava, Mar 27 2009]
a(n) = cos(n*Pi/6)^2 * (39 - 36*cos(n*Pi/3) + 6*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 23 2016
|
|
MAPLE
|
A158677:=n->[3, 4, 0, 5, 6, 3][(n mod 6)+1]: seq(A158677(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
|
|
MATHEMATICA
|
PadRight[{}, 120, {3, 4, 0, 5, 6, 3}] (* Harvey P. Dale, Aug 06 2013 *)
|
|
PROG
|
(MAGMA) &cat [[3, 4, 0, 5, 6, 3]^^20]; // Wesley Ivan Hurt, Jun 23 2016
|
|
CROSSREFS
|
Cf. A158674.
Sequence in context: A197809 A086230 A197485 * A337164 A105576 A105826
Adjacent sequences: A158674 A158675 A158676 * A158678 A158679 A158680
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Mar 24 2009
|
|
EXTENSIONS
|
Edited and extended by R. J. Mathar, Sep 07 2009
|
|
STATUS
|
approved
|
|
|
|