login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158677 Period 6: repeat [3, 4, 0, 5, 6, 3]. 2
3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0, 5, 6, 3, 3, 4, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also the decimal expansion of 1135210/333333 or the continued fraction of (81+sqrt(9867))/58.

LINKS

Table of n, a(n) for n=1..105.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

G.f.: x*(3+4*x+5*x^3+6*x^4+3*x^5) / ((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)).

a(n) = a(n-6) for n>6.

a(n) = (1/30)*{7*(n mod 6)+22*[(n+1) mod 6]+2*[(n+2) mod 6]-18*[(n+3) mod 6]+27*[(n+4) mod 6]+2*[(n+5) mod 6]}. [Paolo P. Lava, Mar 27 2009]

a(n) = cos(n*Pi/6)^2 * (39 - 36*cos(n*Pi/3) + 6*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 23 2016

MAPLE

A158677:=n->[3, 4, 0, 5, 6, 3][(n mod 6)+1]: seq(A158677(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016

MATHEMATICA

PadRight[{}, 120, {3, 4, 0, 5, 6, 3}] (* Harvey P. Dale, Aug 06 2013 *)

PROG

(MAGMA) &cat [[3, 4, 0, 5, 6, 3]^^20]; // Wesley Ivan Hurt, Jun 23 2016

CROSSREFS

Cf. A158674.

Sequence in context: A197809 A086230 A197485 * A337164 A105576 A105826

Adjacent sequences:  A158674 A158675 A158676 * A158678 A158679 A158680

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Mar 24 2009

EXTENSIONS

Edited and extended by R. J. Mathar, Sep 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 10:56 EDT 2021. Contains 343087 sequences. (Running on oeis4.)