login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158623 Denominator of the reduced fraction A158620(n)/A158621(n). 4
9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

A158620(n) = PRODUCT[k=2..n](k^3-1). A158621(n) = PRODUCT[k=2..n](k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...

LINKS

Table of n, a(n) for n=2..50.

FORMULA

Denominator of (PRODUCT[k=2..n](k^3-1))/PRODUCT[k=2..n](k^3+1) = denominator of PRODUCT[k=2..n]A068601(k)/A001093(k).

A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). Conjecture: a(n)=3a(n-3)-3a(n-6)+a(n-9), so trisections are A152996, A060544 and 3*A081266. [From R. J. Mathar, Mar 27 2009]

Empirical g.f.: -x^2*(x^8-2*x^5+9*x^4+18*x^3+10*x^2+18*x+9) / ((x-1)^3*(x^2+x+1)^3). - Colin Barker, May 09 2013

EXAMPLE

a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.

MAPLE

A158623 := proc(n) 2*(n^2+n+1)/3/n/(n+1) ; denom(%) ; end: seq(A158623(n), n=2..100) ; [From R. J. Mathar, Mar 27 2009]

CROSSREFS

Cf. A001093, A016921, A068601, A158620-A158622.

Sequence in context: A069528 A109050 A103700 * A046125 A040072 A034728

Adjacent sequences:  A158620 A158621 A158622 * A158624 A158625 A158626

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Mar 23 2009

EXTENSIONS

More terms from R. J. Mathar, Mar 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 15:31 EST 2019. Contains 319195 sequences. (Running on oeis4.)