login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158602 a(n) = 40*n^2 + 1. 2
1, 41, 161, 361, 641, 1001, 1441, 1961, 2561, 3241, 4001, 4841, 5761, 6761, 7841, 9001, 10241, 11561, 12961, 14441, 16001, 17641, 19361, 21161, 23041, 25001, 27041, 29161, 31361, 33641, 36001, 38441, 40961, 43561, 46241, 49001, 51841, 54761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The identity (40*n^2 + 1)^2 - (400*n^2 + 20)*(2*n)^2 = 1 can be written as a(n)^2 - A158601(n)*A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: -(1 + 38*x + 41*x^2)/(x-1)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MAPLE

A158602:=n->40*n^2; seq(A158602(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013

MATHEMATICA

40*Range[0, 40]^2+1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 41, 161}, 40] (* Harvey P. Dale, Jul 25 2011 *)

Table[40n^2+1, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)

PROG

(MAGMA) I:=[1, 41, 161]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012

(PARI) for(n=0, 40, print1(40*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 16 2012

CROSSREFS

Cf. A005843, A158601.

Sequence in context: A221811 A105100 A141988 * A245743 A142839 A142912

Adjacent sequences:  A158599 A158600 A158601 * A158603 A158604 A158605

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 22 2009

EXTENSIONS

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)