login
A158542
a(n) = Hermite(n,13).
1
1, 26, 674, 17420, 448876, 11531416, 295328056, 7540152464, 191909371280, 4869001213856, 123139662877216, 3104251210530496, 78001458890494144, 1953535902100115840, 48763895523450164096, 1213162278350901022976, 30079302371419921674496, 743240668749689130801664
OFFSET
0,2
COMMENTS
First negative term is a(95). - Georg Fischer, Feb 15 2019
LINKS
FORMULA
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(26*x - x^2).
a(n) = 26*a(n-1) - 2*(n-1)*a(n-2). (End)
MATHEMATICA
Table[HermiteH[n, 13], {n, 0, 50}] (* or *) With[{nmax = 50}, CoefficientList[Series[Exp[26*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(26*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(26*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 13), ", ")) \\ G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A170745 A218728 A209963 * A171331 A097309 A208778
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved