The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158537 a(n) = 22*n^2 + 1. 2
 1, 23, 89, 199, 353, 551, 793, 1079, 1409, 1783, 2201, 2663, 3169, 3719, 4313, 4951, 5633, 6359, 7129, 7943, 8801, 9703, 10649, 11639, 12673, 13751, 14873, 16039, 17249, 18503, 19801, 21143, 22529, 23959, 25433, 26951, 28513, 30119, 31769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From the identity (22*n^2 + 1)^2 - (121*n^2 + 11)*(2*n)^2 = 1 we derive a(n)^2 - A158536(n) * A005843(n)^2 = 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1 + 20*x + 23*x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). MATHEMATICA LinearRecurrence[{3, -3, 1}, {1, 23, 89}, 50] (* Vincenzo Librandi, Feb 12 2012 *) 22*Range[0, 40]^2+1 (* Harvey P. Dale, May 04 2019 *) PROG (MAGMA) I:=[1, 23, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 10 2012 (PARI) for(n=1, 40, print1(22*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 10 2012 CROSSREFS Cf. A005843, A158536. Sequence in context: A050255 A014088 A244453 * A117049 A142062 A050529 Adjacent sequences:  A158534 A158535 A158536 * A158538 A158539 A158540 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 21 2009 EXTENSIONS Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:24 EST 2020. Contains 338858 sequences. (Running on oeis4.)