login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158537 a(n) = 22*n^2 + 1. 2
1, 23, 89, 199, 353, 551, 793, 1079, 1409, 1783, 2201, 2663, 3169, 3719, 4313, 4951, 5633, 6359, 7129, 7943, 8801, 9703, 10649, 11639, 12673, 13751, 14873, 16039, 17249, 18503, 19801, 21143, 22529, 23959, 25433, 26951, 28513, 30119, 31769 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From the identity (22*n^2 + 1)^2 - (121*n^2 + 11)*(2*n)^2 = 1 we derive a(n)^2 - A158536(n) * A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1 + 20*x + 23*x^2)/(1-x)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {1, 23, 89}, 50] (* Vincenzo Librandi, Feb 12 2012 *)

22*Range[0, 40]^2+1 (* Harvey P. Dale, May 04 2019 *)

PROG

(MAGMA) I:=[1, 23, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 10 2012

(PARI) for(n=1, 40, print1(22*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 10 2012

CROSSREFS

Cf. A005843, A158536.

Sequence in context: A050255 A014088 A244453 * A117049 A142062 A050529

Adjacent sequences:  A158534 A158535 A158536 * A158538 A158539 A158540

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 21 2009

EXTENSIONS

Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 22:24 EST 2020. Contains 338858 sequences. (Running on oeis4.)