login
A158531
a(n) = Hermite(n,8).
1
1, 16, 254, 4000, 62476, 967616, 14857096, 226102144, 3409634960, 50936525056, 753610971616, 11039045044736, 160045279340224, 2295787388369920, 32571420951072896, 456860688342808576, 6332628384952750336, 86702512132274130944, 1171930829027992583680
OFFSET
0,2
COMMENTS
The first negative term is a(40) = -15216726248438640506371403737952889391284224. - Robert Israel, Apr 30 2018
LINKS
FORMULA
E.g.f.: exp(-x^2+16*x). a(n+2)=16*a(n+1)-(2*n+2)*a(n). - Robert Israel, Apr 30 2018
MAPLE
seq(orthopoly[H](n, 8), n=0..100); # Robert Israel, Apr 30 2018
MATHEMATICA
Table[HermiteH[n, 8], {n, 0, 40}] (* Vincenzo Librandi, May 01 2018 *)
PROG
(PARI) a(n) = polhermite(n, 8); \\ Michel Marcus, May 01 2018
(Magma) I:=[1, 16]; [n le 2 select I[n] else 16*Self(n-1)-(2*n-4)*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 01 2018
CROSSREFS
Sequence in context: A160446 A317894 A228982 * A370964 A171321 A077412
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved