

A158529


List of primes p with following properties: p = prime(n1) for some n, p+7 is a square and is equal to prime(n+1)1.


1



29, 569, 1289, 41609, 147449, 2322569, 2842589, 7096889, 7485689, 10074269, 16208669, 21288989, 33802589, 54819209, 56610569, 57699209, 59814749, 115218749, 118069949, 126427529, 134235389, 149670749, 196448249, 240746249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: If the condition holds, prime(n1) and prime(n) are twin primes of the form 10k+9 and 10k1+1, i.e. the last digits of the twin prime pairs are 9 and 1. The 9 ending is evident in this sequence. The table of the first 101 terms was computed using Zak Seidov's table.


LINKS

Cino Hilliard, List of n, a(n) for n=1..101
S. M. Ruiz, Integer then equal.
Sebastian Martin Ruiz and others, Integers then Equals, digest of 7 messages in primenumbers Yahoo group, Mar 14  Mar 20, 2009.
Zak Seidov, A158470 first 101 terms.


FORMULA

Prime(n) is the nth prime number.


EXAMPLE

For n = 11, prime(111)=29, 29+7=36; prime(11+1)=37, 371=36. So 29 is the first entry in the sequence.


MATHEMATICA

ppQ[{a_, b_}]:=Module[{s=Prime[a+1]1}, IntegerQ[Sqrt[s]]&&b+7==s]; Select[ Table[ {n, Prime[n1]}, {n, 2, 133*10^5}], ppQ][[All, 2]] (* Harvey P. Dale, Jul 31 2020 *)


PROG

(PARI) \\Copy and paste the Zak's file to zaklist.txt and edit to a straight
\\list with CR after each entry. Start a new Pari sesion then \r zakilist.txt
integerequal(a, b) =
{
local(x, p1, p2);
for(j=1, 101,
x=eval(concat("%", j)); p1=prime2(x1);
if(issquare(p1+a),
p2=prime2(x+1); if((p1+a)==(p2b),
print1(p1", ")
)
prime2(n) = \\the nth prime using c:\sieve\prime.exe calling 8byte binary
\\g:\sievedata\prime21trill.bin" 300 gig file of primes <10^12
{
local(x, s);
s=concat("c:/sieve/prime ", Str(n));
s=concat(s, " > temp.txt");
\\Must save to a temp file for correct output
system(s);
return(read("temp.txt"))
}
)
)
}


CROSSREFS

Sequence in context: A023948 A020974 A167740 * A020766 A069295 A103723
Adjacent sequences: A158526 A158527 A158528 * A158530 A158531 A158532


KEYWORD

nonn


AUTHOR

Cino Hilliard, Mar 20 2009


EXTENSIONS

Edited by N. J. A. Sloane Aug 31 2009 (rephrased definition, corrected offset).


STATUS

approved



