login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158529 List of primes p with following properties: p = prime(n-1) for some n, p+7 is a square and is equal to prime(n+1)-1. 1
29, 569, 1289, 41609, 147449, 2322569, 2842589, 7096889, 7485689, 10074269, 16208669, 21288989, 33802589, 54819209, 56610569, 57699209, 59814749, 115218749, 118069949, 126427529, 134235389, 149670749, 196448249, 240746249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: If the condition holds, prime(n-1) and prime(n) are twin primes of the form 10k+9 and 10k1+1, i.e. the last digits of the twin prime pairs are 9 and 1. The 9 ending is evident in this sequence. The table of the first 101 terms was computed using Zak Seidov's table.

LINKS

Cino Hilliard, List of n, a(n) for n=1..101

S. M. Ruiz, Integer then equal.

Zak Seidov, A158470 first 101 terms.

FORMULA

Prime(n) is the n-th prime number.

EXAMPLE

For n = 11, prime(11-1)=29, 29+7=36; prime(11+1)=37, 37-1=36. So 29 is the first entry in the sequence.

PROG

(PARI) \\Copy and paste the Zak's file to zaklist.txt and edit to a straight

\\list with CR after each entry. Start a new Pari sesion then \r zakilist.txt

integerequal(a, b) =

{

local(x, p1, p2);

for(j=1, 101,

x=eval(concat("%", j)); p1=prime2(x-1);

if(issquare(p1+a),

p2=prime2(x+1); if((p1+a)==(p2-b),

print1(p1", ")

)

prime2(n) = \\the n-th prime using c:\sieve\prime.exe calling 8byte binary

\\g:\sievedata\prime2-1trill.bin" 300 gig file of primes <10^12

{

local(x, s);

s=concat("c:/sieve/prime ", Str(n));

s=concat(s, " > temp.txt");

\\Must save to a temp file for correct output

system(s);

return(read("temp.txt"))

}

)

)

}

CROSSREFS

Sequence in context: A023948 A020974 A167740 * A020766 A069295 A103723

Adjacent sequences:  A158526 A158527 A158528 * A158530 A158531 A158532

KEYWORD

nonn

AUTHOR

Cino Hilliard, Mar 20 2009

EXTENSIONS

Edited by N. J. A. Sloane Aug 31 2009 (rephrased definition, corrected offset).

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 03:10 EDT 2019. Contains 323412 sequences. (Running on oeis4.)