This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158522 Dirichlet inverse of number of unitary divisors of n (A034444). 1
 1, -2, -2, 2, -2, 4, -2, -2, 2, 4, -2, -4, -2, 4, 4, 2, -2, -4, -2, -4, 4, 4, -2, 4, 2, 4, -2, -4, -2, -8, -2, -2, 4, 4, 4, 4, -2, 4, 4, 4, -2, -8, -2, -4, -4, 4, -2, -4, 2, -4, 4, -4, -2, 4, 4, 4, 4, 4, -2, 8, -2, 4, -4, 2, 4, -8, -2, -4, 4, -8, -2, -4, -2, 4, -4, -4, 4, -8, -2, -4, 2, 4, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Abs{a(n)} = A034444(n). Examples of Dirichlet convolutions with function a(n), i.e. b(n) = Sum_{d|n} a(d)*c(n/d): a(n) * A034444(n) = A063524(n), a(n) * A000005(n) = A010052(n), a(n) * A000027(n) = A074722(n), a(n) * A000012(n) = A008836(n). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(n) = (-1)^A001222(n)*A034444(n) = (-1)^A001222(n)*2^A001221(n), for n >= 2. Multiplicative with a(p^e) = 2*(-1)^e, p prime, e>0. a(p^0) = 1. Dirichlet g.f.: zeta(2s)/(zeta(s))^2. - R. J. Mathar, Apr 02 2011 EXAMPLE a(60) = a(2^2*3*5) = [(-1)^2*2]*[(-1)^1*2]*[(-1)^1*2] = 2*(-2)*(-2) = 8. MATHEMATICA Table[LiouvilleLambda[n] 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Mar 07 2015 *) PROG (PARI) for(n=1, 20, print1((-1)^bigomega(n)* 2^omega(n), ", ")) \\ G. C. Greubel, May 21 2017 CROSSREFS Cf. A034444, A063524, A000005, A010052, A000027, A074722, A001222, A001221, A000040, A006881, A120944, A000961. Sequence in context: A058263 A232398 A048669 * A034444 A318465 A073180 Adjacent sequences:  A158519 A158520 A158521 * A158523 A158524 A158525 KEYWORD sign,mult AUTHOR Jaroslav Krizek, Mar 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 20:29 EDT 2019. Contains 322446 sequences. (Running on oeis4.)