login
A158506
Determinants of n-times-n matrices M of the form M[i,j] = 2^(i*j).
0
2, 16, 3072, 66060288, 681869007912960, 13963783542711369125068800, 2305981313752949175455638153064349696000, 12380897999371387785024422461502386865911933091803299840000
OFFSET
1,1
FORMULA
a(n)=2^((1/6)*n*(n+1)*(n+2))*product(product(2^p-1, p = 1..l), l = 1..n-1).
a(n)=2^A000292(n)*product_{i=1..n-1} A005329(i). - R. J. Mathar, Mar 27 2009
a(n) ~ c * QPochhammer(1/2)^n * 2^(n*(2*n^2 + 3*n + 1)/6), where c = 10.032129775337715051413862095841451215826928327290198829... - Vaclav Kotesovec, Apr 17 2018
MAPLE
a(n) := 2^((1/6)*n*(n+1)*(n+2))*mul(mul(2^p-1, p = 1..l), l = 1..n-1):
MATHEMATICA
Table[2^(n*(n+1)*(n+2)/6) * Product[Product[2^p-1, {p, 1, m}], {m, 1, n-1}], {n, 1, 10}] (* Vaclav Kotesovec, Apr 17 2018 *)
CROSSREFS
Sequence in context: A165644 A338005 A203315 * A167435 A270124 A138834
KEYWORD
nonn
AUTHOR
P. Dunin-Barkowski, A. Sleptsov (elandread(AT)yandex.ru), Mar 20 2009
STATUS
approved