This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)). 1
 1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Vincenzo Librandi, Rows n = 1..50, flattened FORMULA T(n,k) = A000010(p^k-1)/k with p=A000040(n). EXAMPLE The array starts in row n=1 with columns k>=1 as 1, 1,  2,     2,     6,      6,     18,     16,      48,       60,  A011260 1, 2,  4,     8,    22,     48,    156,    320,    1008,     2640,  A027385 2, 4,  20,   48,   280,    720,   5580,  14976,   99360,   291200,  A027741 2, 8,  36,  160,  1120,   6048,  37856, 192000, 1376352,  8512000,  A027743 4,16, 144,  960, 12880,  62208,1087632,7027200,85098816,691398400, 4,24, 240, 1536, 24752, 224640,2988024,21934080 MAPLE A := proc(n, k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if; end proc: MATHEMATICA t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *) CROSSREFS Cf. A000010, A000040. Sequence in context: A052273 A074912 A274207 * A215244 A195427 A006643 Adjacent sequences:  A158499 A158500 A158501 * A158503 A158504 A158505 KEYWORD nonn,tabl,easy AUTHOR R. J. Mathar, Aug 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 09:52 EDT 2019. Contains 322472 sequences. (Running on oeis4.)