login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)). 1
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Vincenzo Librandi, Rows n = 1..50, flattened

FORMULA

T(n,k) = A000010(p^k-1)/k with p=A000040(n).

EXAMPLE

The array starts in row n=1 with columns k>=1 as

1, 1,  2,     2,     6,      6,     18,     16,      48,       60,  A011260

1, 2,  4,     8,    22,     48,    156,    320,    1008,     2640,  A027385

2, 4,  20,   48,   280,    720,   5580,  14976,   99360,   291200,  A027741

2, 8,  36,  160,  1120,   6048,  37856, 192000, 1376352,  8512000,  A027743

4,16, 144,  960, 12880,  62208,1087632,7027200,85098816,691398400,

4,24, 240, 1536, 24752, 224640,2988024,21934080

MAPLE

A := proc(n, k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if; end proc:

MATHEMATICA

t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-Fran├žois Alcover, Jun 04 2012, after Maple *)

CROSSREFS

Cf. A000010, A000040.

Sequence in context: A052273 A074912 A274207 * A215244 A195427 A006643

Adjacent sequences:  A158499 A158500 A158501 * A158503 A158504 A158505

KEYWORD

nonn,tabl,easy

AUTHOR

R. J. Mathar, Aug 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 09:52 EDT 2019. Contains 322472 sequences. (Running on oeis4.)