This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158499 Expansion of (1+sqrt(1-4x))/(2-4x). 1
 1, 1, 1, 0, -5, -24, -90, -312, -1053, -3536, -11934, -40664, -140114, -488240, -1719380, -6113200, -21921245, -79200160, -288045110, -1053728920, -3874721030, -14313562480, -53093391980, -197669347600, -738398308850, -2766700765024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Hankel transform is A056594 with g.f. 1/(1+x^2). Row sums of the Riordan array (sqrt(1-4x)/(1-2x),xc(x)^2), c(x) the g.f. of A000108. The inverse Catalan transform yields A146559. - R. J. Mathar, Mar 20 2009 LINKS Matthew House, Table of n, a(n) for n = 0..1669 FORMULA a(n) = Sum_{k=0..n} binomial(2k,k)*A158495(n-k). Conjecture: n*a(n) +6*(1-n)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011 This conjecture has been proven. - Matthew House, Nov 08 2015 MATHEMATICA CoefficientList[ Series[(1 + Sqrt[1 - 4x])/(2 - 4x), {x, 0, 26}], x] (* Robert G. Wilson v, Nov 08 2015 *) PROG (PARI) x='x+O('x^33); Vec(((1-4*x)+sqrt(1-4*x))/(2*(1-2*x)*sqrt(1-4*x))) \\ Altug Alkan, Nov 08 2015 CROSSREFS Sequence in context: A089095 A220316 A220339 * A074085 A145914 A066316 Adjacent sequences:  A158496 A158497 A158498 * A158500 A158501 A158502 KEYWORD easy,sign AUTHOR Paul Barry, Mar 20 2009 EXTENSIONS Name edited by Matthew House, Nov 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)