login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158488 a(n) = 64*n^2 + 8. 2
72, 264, 584, 1032, 1608, 2312, 3144, 4104, 5192, 6408, 7752, 9224, 10824, 12552, 14408, 16392, 18504, 20744, 23112, 25608, 28232, 30984, 33864, 36872, 40008, 43272, 46664, 50184, 53832, 57608, 61512, 65544, 69704, 73992, 78408, 82952 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (16*n^2+1)^2 - (64*n^2+8)*(2*n)^2 = 1 can be written as A108211(n)^2 - a(n)*A005843(n)^2 = 1. - rewritten by Bruno Berselli, Nov 16 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(1)=72, a(2)=264, a(3)=584, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 16 2011

G.f: x*(72 + 48*x + 8*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 08 2012

MAPLE

A158488:=n->64*n^2+8: seq(A158488(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2017

MATHEMATICA

64Range[40]^2+8 (* or *) LinearRecurrence[{3, -3, 1}, {72, 264, 584}, 40] (* Harvey P. Dale, Nov 16 2011 *)

PROG

(MAGMA) I:=[72, 264, 584]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012

(PARI) for(n=1, 40, print1(64*n^2 + 8", ")); \\ Vincenzo Librandi, Feb 08 2012

CROSSREFS

Cf. A005843, A108211.

Sequence in context: A250749 A019507 A303081 * A165139 A305222 A316800

Adjacent sequences:  A158485 A158486 A158487 * A158489 A158490 A158491

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 21:16 EDT 2018. Contains 316541 sequences. (Running on oeis4.)