login
A158446
a(n) = 25*n^2 - 5.
2
20, 95, 220, 395, 620, 895, 1220, 1595, 2020, 2495, 3020, 3595, 4220, 4895, 5620, 6395, 7220, 8095, 9020, 9995, 11020, 12095, 13220, 14395, 15620, 16895, 18220, 19595, 21020, 22495, 24020, 25595, 27220, 28895, 30620, 32395, 34220, 36095, 38020, 39995, 42020, 44095
OFFSET
1,1
COMMENTS
The identity (10*n^2-1)^2 - (25*n^2-5)*(2*n)^2 = 1 can be written as A158447(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 5*x*(4+7*x-x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(5))*Pi/sqrt(5))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(5))*Pi/sqrt(5) - 1)/10. (End)
MATHEMATICA
Table[25n^2-5, {n, 50}]
LinearRecurrence[{3, -3, 1}, {20, 95, 220}, 40] (* Harvey P. Dale, May 05 2019 *)
PROG
(Magma) I:=[20, 95, 220]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
(PARI) a(n) = 25*n^2 - 5.
CROSSREFS
Sequence in context: A144359 A124948 A126407 * A221704 A222772 A267646
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 19 2009
STATUS
approved