The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158401 a(n) = 841*n^2 - 2*n. 2
 839, 3360, 7563, 13448, 21015, 30264, 41195, 53808, 68103, 84080, 101739, 121080, 142103, 164808, 189195, 215264, 243015, 272448, 303563, 336360, 370839, 407000, 444843, 484368, 525575, 568464, 613035, 659288, 707223, 756840, 808139, 861120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (841*n-1)^2-(841*n^2-2*n)*(29)^2 = 1 can be written as A158402(n)^2-a(n)*(29)^2 = 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(29^2*t-2)). Vincenzo Librandi, X^2-AY^2=1 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. G.f.: x*(-839-843*x)/(x-1)^3. MAPLE A158401:=n->841*n^2 - 2*n: seq(A158401(n), n=1..50); # Wesley Ivan Hurt, Oct 15 2017 MATHEMATICA LinearRecurrence[{3, -3, 1}, {839, 3360, 7563}, 50] PROG (MAGMA) I:=[839, 3360, 7563]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; (PARI) a(n) = 841*n^2 - 2*n. CROSSREFS Cf. A158402. Sequence in context: A202716 A118380 A135639 * A290119 A156937 A135640 Adjacent sequences:  A158398 A158399 A158400 * A158402 A158403 A158404 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 09:57 EST 2020. Contains 332041 sequences. (Running on oeis4.)