



728, 1457, 2186, 2915, 3644, 4373, 5102, 5831, 6560, 7289, 8018, 8747, 9476, 10205, 10934, 11663, 12392, 13121, 13850, 14579, 15308, 16037, 16766, 17495, 18224, 18953, 19682, 20411, 21140, 21869, 22598, 23327, 24056, 24785, 25514, 26243
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The identity (729*n1)^2(729*n^22*n)*(27)^2=1 can be written as a(n)^2A158394(n)*(27)^2=1.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 8485 (row 15 in the first table at p. 85, case d(t) = t*(27^2*t2)).
Index to sequences with linear recurrences with constant coefficients, signature (2,1).


FORMULA

a(n) = 2*a(n1)a(n2).
G.f.: x*(728+x)/(1x)^2.


MATHEMATICA

LinearRecurrence[{2, 1}, {728, 1457}, 50]


PROG

(MAGMA) I:=[728, 1457]; [n le 2 select I[n] else 2*Self(n1)Self(n2): n in [1..50]];
(PARI) a(n) = 729*n  1.


CROSSREFS

Cf. A158394.
Sequence in context: A191345 A023704 A043487 * A184077 A234652 A050219
Adjacent sequences: A158392 A158393 A158394 * A158396 A158397 A158398


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Mar 18 2009


STATUS

approved



