login
A158392
676n^2 - 2n.
2
674, 2700, 6078, 10808, 16890, 24324, 33110, 43248, 54738, 67580, 81774, 97320, 114218, 132468, 152070, 173024, 195330, 218988, 243998, 270360, 298074, 327140, 357558, 389328, 422450, 456924, 492750, 529928, 568458, 608340, 649574, 692160
OFFSET
1,1
COMMENTS
The identity (676*n-1)^2-(676*n^2-2*n)*(26)^2=1 can be written as A158393(n)^2-a(n)*(26)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(26^2*t-2)).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-674-678*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {674, 2700, 6078}, 50]
PROG
(Magma) I:=[674, 2700, 6078]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 676*n^2 - 2*n.
CROSSREFS
Cf. A158393.
Sequence in context: A234117 A171266 A267818 * A264328 A124942 A158393
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved