login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158385 676n^2 + 2n. 2
678, 2708, 6090, 10824, 16910, 24348, 33138, 43280, 54774, 67620, 81818, 97368, 114270, 132524, 152130, 173088, 195398, 219060, 244074, 270440, 298158, 327228, 357650, 389424, 422550, 457028, 492858, 530040, 568574, 608460, 649698, 692288 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (676*n+1)^2-(676*n^2+2*n)*(26)^2=1 can be written as A158386(n)^2-a(n)*(26)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(26^2*t+2)).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

G.f.: x*(678+674*x)/(1-x)^3.

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {678, 2708, 6090}, 50]

PROG

(MAGMA) I:=[678, 2708, 6090]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];

(PARI) a(n) = 676*n^2 + 2*n.

CROSSREFS

Cf. A158386.

Sequence in context: A097773 A248887 A031524 * A251836 A251830 A250872

Adjacent sequences:  A158382 A158383 A158384 * A158386 A158387 A158388

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 23:16 EST 2016. Contains 278993 sequences.