login
A158376
Expansion of 1/q(x) where q(x) = x^16*p(1/x) and p(x) = -332914995*x - 121099959*x^2 - 54262863*x^3 - 37433763*x^4 - 1488468*x^5 - 4442464*x^6 + 462362*x^7 - 241686*x^8 + 63542*x^9 + 26*x^10 + 3732*x^11 + 776*x^12 + 113*x^13 + 45*x^14 + x^15 + x^16.
0
1, -1, -44, -24, 1341, 1755, -21538, -89654, 215873, 1978283, 4362946, -41493994, -146595004, 199773652, 4332900506, 399542726, -31367063828, -291436749508, 599072094382, 2087538126074, 21203843886148, -108990928314404
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1, -45, -113, -776, -3732, -26, -63542, 241686, -462362, 4442464, 1488468, 37433763, 54262863, 121099959, 332914995).
MATHEMATICA
f[x_] := -332914995 x - 121099959 x^2 - 54262863 x^3 - 37433763 x^4 - 1488468 x^5 - 4442464 x^6 + 462362 x^7 - 241686 x^8 + 63542 x^9 + 26 x^10 + 3732 x^11 + 776 x^12 + 113 x^13 + 45 x^14 + x^15 + x^16;
g[x] = ExpandAll[x^16*f[1/x]];
a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, n}], n], {n, 0, 25}]
CROSSREFS
Sequence in context: A033977 A033364 A108213 * A036182 A109644 A165865
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, Mar 17 2009
STATUS
approved