login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158329 484n^2 - 2n. 2
482, 1932, 4350, 7736, 12090, 17412, 23702, 30960, 39186, 48380, 58542, 69672, 81770, 94836, 108870, 123872, 139842, 156780, 174686, 193560, 213402, 234212, 255990, 278736, 302450, 327132, 352782, 379400, 406986, 435540, 465062, 495552 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (484*n-1)^2-(484*n^2-2*n)*(22)^2=1 can be written as A158330(n)^2-a(n)*(22)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(22^2*t-2)).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

G.f.: x*(-482-486*x)/(x-1)^3.

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {482, 1932, 4350}, 50]

PROG

(MAGMA) I:=[482, 1932, 4350]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];

(PARI) a(n) = 484*n^2 - 2*n.

CROSSREFS

Cf. A158330.

Sequence in context: A214170 A304325 A175536 * A231395 A263291 A121734

Adjacent sequences:  A158326 A158327 A158328 * A158330 A158331 A158332

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 14:52 EST 2020. Contains 338769 sequences. (Running on oeis4.)