This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158322 a(n) = 441*n + 1. 3
 442, 883, 1324, 1765, 2206, 2647, 3088, 3529, 3970, 4411, 4852, 5293, 5734, 6175, 6616, 7057, 7498, 7939, 8380, 8821, 9262, 9703, 10144, 10585, 11026, 11467, 11908, 12349, 12790, 13231, 13672, 14113, 14554, 14995, 15436, 15877, 16318, 16759 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (441*n + 1)^2 - (441*n^2 + 2*n)*21^2 = 1 can be written as a(n)^2 - A158321(n)*21^2 = 1. - Vincenzo Librandi, Jan 24 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(21^2*t+2)). Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA G.f.: x*(442-x)/(1-x)^2. - Vincenzo Librandi, Jan 24 2012 a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 24 2012 MATHEMATICA LinearRecurrence[{2, -1}, {442, 883}, 50] (* Vincenzo Librandi, Jan 24 2012 *) PROG (MAGMA) I:=[442, 883]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; (PARI) for(n=1, 38, print1(441*n+1", ")); \\ Vincenzo Librandi, Jan 24 2012 CROSSREFS Cf. A158321. Sequence in context: A013769 A013899 A075268 * A031720 A069106 A094410 Adjacent sequences:  A158319 A158320 A158321 * A158323 A158324 A158325 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)