login
A158306
324n - 1.
2
323, 647, 971, 1295, 1619, 1943, 2267, 2591, 2915, 3239, 3563, 3887, 4211, 4535, 4859, 5183, 5507, 5831, 6155, 6479, 6803, 7127, 7451, 7775, 8099, 8423, 8747, 9071, 9395, 9719, 10043, 10367, 10691, 11015, 11339, 11663, 11987, 12311, 12635, 12959
OFFSET
1,1
COMMENTS
The identity (324*n-1)^2-(324*n^2-2*n)*(18)^2=1 can be written as a(n)^2-A158305(n)*(18)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(18^2*t-2)).
FORMULA
a(n) = 2*a(n-1)-a(n-2).
G.f.: x*(323+x)/(1-x)^2.
MATHEMATICA
324Range[50]-1 (* Harvey P. Dale, Mar 13 2011 *)
CROSSREFS
Cf. A158305.
Sequence in context: A177745 A065822 A279072 * A257973 A083138 A121209
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved