login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158258 L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} Lucas(n)*a(n)*x^n/n) where Lucas(n) = A000204(n). 2
1, 1, 4, 21, 186, 2482, 52431, 1742069, 92198200, 7788221136, 1053871857226, 228795949744458, 79812945269217967, 44781474458725910347, 40447360752560508229164, 58848264986153917140728453 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..15.

FORMULA

L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158257.

exp(Sum_{n>=1} a(n)*x^n/n) = (1 + Sum_{n>=1} Lucas(n)*a(n)*x^n) / (1 + Sum_{n>=1} (Lucas(n)-1)*a(n)*x^n).

EXAMPLE

L.g.f.: A(x) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 2482*x^6/6 +...

exp(A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 44*x^5 + 458*x^6 + 7953*x^7 +...

exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158257 such that:

log(G(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 11*186*x^5/5 + 18*2482*x^6/6 +...

PROG

(PARI) {a(n)=local(A=x+x^2); if(n==0, 1, for(i=1, n-1, A=log(1+x*exp(sum(m=1, n, (fibonacci(m-1)+fibonacci(m+1))*x^m*polcoeff(A+x*O(x^m), m) )+x*O(x^n)))); n*polcoeff(A, n))}

CROSSREFS

Cf. A158257, A158108 (variant), A000204 (Lucas).

Sequence in context: A221370 A224500 A158108 * A065527 A267988 A041667

Adjacent sequences:  A158255 A158256 A158257 * A158259 A158260 A158261

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 05:52 EDT 2019. Contains 326260 sequences. (Running on oeis4.)