login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158221 a(n) = 169n + 1. 2
170, 339, 508, 677, 846, 1015, 1184, 1353, 1522, 1691, 1860, 2029, 2198, 2367, 2536, 2705, 2874, 3043, 3212, 3381, 3550, 3719, 3888, 4057, 4226, 4395, 4564, 4733, 4902, 5071, 5240, 5409, 5578, 5747, 5916, 6085, 6254, 6423, 6592, 6761, 6930, 7099, 7268 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (169*n+1)^2 - (169*n^2 + 2*n)*(13)^2 = 1 can be written as a(n)^2 - A158220(n)*(13)^2 = 1. - Vincenzo Librandi, Feb 02 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(13^2*t+2)).

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: x*(170-x)/(1-x)^2. - Vincenzo Librandi, Feb 02 2012

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012

MATHEMATICA

LinearRecurrence[{2, -1}, {170, 339}, 50] (* Vincenzo Librandi, Feb 02 2012 *)

PROG

(PARI) a(n)=169*n+1 \\ Charles R Greathouse IV, Dec 28 2011

(MAGMA) I:=[170, 339]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 02 2012

CROSSREFS

Cf. A158220.

Sequence in context: A043746 A043762 A043771 * A067781 A043344 A045153

Adjacent sequences:  A158218 A158219 A158220 * A158222 A158223 A158224

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 04:39 EST 2021. Contains 341779 sequences. (Running on oeis4.)