This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158188 Characteristic polynomials of a binomial modulo two Hadamard transpose general matrix: t(n,m,d) = If[ m <= n, binomial(n, m) mod 2], 0]; M(d)=t(n,m,d).Transpose[t(n,m,d)]. 0
 1, 1, -1, 1, -2, 1, 1, -5, 5, -1, 1, -6, 10, -6, 1, 1, -9, 25, -25, 9, -1, 1, -12, 48, -78, 48, -12, 1, 1, -19, 102, -228, 228, -102, 19, -1, 1, -20, 121, -330, 456, -330, 121, -20, 1, 1, -23, 176, -628, 1167, -1167, 628, -176, 23, -1, 1, -26, 239, -1062, 2532, -3368 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, ... Example matrix:   M(3) = {{1, 0, 1},           {0, 1, 1},           {1, 1, 3}} The traditional Hadamard self-similar matrix construction is on symbols {1,-1}. When instead the symbols {0,1} are use you get:   H(2*n) = {{H(n), H(n)},             {H(n),  0  }} which turns out to be a rotated Sierpinski-Pascal modulo two as an n X n matrix. Here the Hadamard transpose product of that construction gives a new set of symmetrical polynomials. REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, pp. 44-48. LINKS FORMULA t(n,m,d) = If[ m <= n, binomial(n, m) mod 2, 0]; M(d) = t(n,m,d).Transpose[t(n,m,d)]; a(n,m) = coefficients(characteristicpolynomial(M(n),x),x). EXAMPLE {1}, {1,  -1}, {1,  -2,   1}, {1,  -5,   5,    -1}, {1,  -6,  10,    -6,    1}, {1,  -9,  25,   -25,    9,    -1}, {1, -12,  48,   -78,   48,   -12,    1}, {1, -19, 102,  -228,  228,  -102,   19,    -1}, {1, -20, 121,  -330,  456,  -330,  121,   -20,   1}, {1, -23, 176,  -628, 1167, -1167,  628,  -176,  23,  -1}, {1, -26, 239, -1062, 2532, -3368, 2532, -1062, 239, -26, 1} MATHEMATICA Clear[M, T, d, a, x, a0]; T[n_, m_, d_] := If[ m <= n, Mod[Binomial[n, m], 2], 0]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].Transpose[Table[T[n, m, d], {n, 1, d}, {m, 1, d}]]; a0 = Table[M[d], {d, 1, 10}]; Table[Det[M[d]], {d, 1, 10}]; Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x], {n, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[Expand[CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]]; CROSSREFS Sequence in context: A058676 A147649 A147644 * A176625 A197342 A197217 Adjacent sequences:  A158185 A158186 A158187 * A158189 A158190 A158191 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula and Gary W. Adamson, Mar 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 17:43 EDT 2019. Contains 324142 sequences. (Running on oeis4.)