This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158135 144n^2 - 2n. 2
 142, 572, 1290, 2296, 3590, 5172, 7042, 9200, 11646, 14380, 17402, 20712, 24310, 28196, 32370, 36832, 41582, 46620, 51946, 57560, 63462, 69652, 76130, 82896, 89950, 97292, 104922, 112840, 121046, 129540, 138322, 147392, 156750, 166396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (144*n-1)^2-(144*n^2-2*n)*12^2 = 1 can be written as A158136(n)^2-a(n)*12^2 = 1. - Vincenzo Librandi, Feb 11 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(12^2*t-2)). Index to sequences with linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(-142-146*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012 a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 11 2012 MATHEMATICA LinearRecurrence[{3, -3, 1}, {142, 572, 1290}, 50] (* Vincenzo Librandi, Feb 11 2012 *) PROG (MAGMA) I:=[142, 572, 1290]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 11 2012 (PARI) for(n=1, 50, print1(144*n^2 - 2*n", ")); \\ Vincenzo Librandi, Feb 11 2012 CROSSREFS Cf. A158136. Sequence in context: A172335 A217531 A114808 * A092230 A219146 A200453 Adjacent sequences:  A158132 A158133 A158134 * A158136 A158137 A158138 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .