OFFSET
1,12
COMMENTS
Constant term in the expansion of (x + 1/x)(x^8 + 1/x^8)..(x^n^3 + 1/x^n^3).
a(n) = 0 for any n=1 (mod 4) or n=2 (mod 4).
The expansion above and the integral representation formula below are due to Andrica & Tomescu. The asymptotic formula is a conjecture; see Andrica & Ionascu. - Jonathan Sondow, Nov 06 2013
LINKS
Ray Chandler, Table of n, a(n) for n = 1..130
D. Andrica and E. J. Ionascu, Variations on a result of Erdős and Surányi, INTEGERS 2013 slides.
Dorin Andrica and Ioan Tomescu, On an Integer Sequence Related to a Product of Trigonometric Functions, and Its Combinatorial Relevance, J. Integer Sequences, 5 (2002), Article 02.2.4.
FORMULA
a(n) = 2 * A113263(n).
Integral representation: a(n)=((2^n)/Pi)*int_0^Pi prod_{k=1}^n cos(x*k^3) dx.
Asymptotic formula: a(n)=(2^n)*sqrt(14/(Pi*n^7))*(1+o(1)) as n-->infty; n=-1 or 0 (mod 4).
EXAMPLE
Example: For n=12 the a(12) = 2 solutions are:
+1+8-27+64-125-216-343+512+729-1000-1331+1728=0,
-1-8+27-64+125+216+343-512-729+1000+1331-1728=0.
MAPLE
N:=60: p:=1: a:=[]: for n from 1 to N do p:=expand(p*( x^(n^3) + x^(-n^3) )): a:=[op(a), coeff(p, x, 0)]: od:a;
CROSSREFS
KEYWORD
nonn
AUTHOR
Pietro Majer, Mar 12 2009
STATUS
approved