login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158118 Number of solutions of +-1+-2^3+-3^3..+-n^3=0. 5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 4, 124, 0, 0, 536, 712, 0, 0, 4574, 2260, 0, 0, 10634, 73758, 0, 0, 406032, 638830, 0, 0, 4249160, 3263500, 0, 0, 21907736, 82561050, 0, 0, 485798436, 945916970, 0, 0, 5968541478, 6839493576, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Constant term in the expansion of (x + 1/x)(x^8 + 1/x^8)..(x^n^3 + 1/x^n^3).

a(n) = 0 for any n=1 (mod 4) or n=2 (mod 4).

The expansion above and the integral representation formula below are due to Andrica & Tomescu. The asymptotic formula is a conjecture; see Andrica & Ionascu. - Jonathan Sondow, Nov 06 2013

LINKS

Ray Chandler, Table of n, a(n) for n = 1..130

D. Andrica and E. J. Ionascu, Variations on a result of Erdős and Surányi, INTEGERS 2013 slides.

Dorin Andrica and Ioan Tomescu, On an Integer Sequence Related to a Product of Trigonometric Functions, and Its Combinatorial Relevance, J. Integer Sequences, 5 (2002), Article 02.2.4.

FORMULA

a(n) = 2 * A113263(n).

Integral representation: a(n)=((2^n)/Pi)*int_0^Pi prod_{k=1}^n cos(x*k^3) dx.

Asymptotic formula: a(n)=(2^n)*sqrt(14/(Pi*n^7))*(1+o(1)) as n-->infty; n=-1 or 0 (mod 4).

EXAMPLE

Example: For n=12 the a(12) = 2 solutions are:

+1+8-27+64-125-216-343+512+729-1000-1331+1728=0,

-1-8+27-64+125+216+343-512-729+1000+1331-1728=0.

MAPLE

N:=60: p:=1: a:=[]: for n from 1 to N do p:=expand(p*( x^(n^3) + x^(-n^3) )): a:=[op(a), coeff(p, x, 0)]: od:a;

CROSSREFS

Equals twice A113263.

Cf. A063865, A158092, A019568. - Pietro Majer, Mar 15 2009

Sequence in context: A118965 A252729 A121552 * A212137 A230295 A147592

Adjacent sequences:  A158115 A158116 A158117 * A158119 A158120 A158121

KEYWORD

nonn

AUTHOR

Pietro Majer, Mar 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 15:52 EDT 2017. Contains 284243 sequences.