login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158099 Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...]. 3
1, 2, 19, 548, 66749, 33695574, 68787981855, 563088066184424, 18447871299903970005, 2417888543453357864445634, 1267655436282309648681395304255, 2658458526916981532120588021462151100, 22300750515466692968838881088968809185127601 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..35

FORMULA

G.f.: A(x) = 1/Product_{n>=1} (1 - x^n)^(2^(n^2)).

G.f.: exp( Sum_{n>=1} L(n)*x^n/n ) where L(n) = Sum_{d|n} d*2^(d^2). [Paul D. Hanna, Oct 18 2009]

EXAMPLE

G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +...

A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...].

MAPLE

with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)):

seq(a(n), n=0..15); # Alois P. Heinz, Sep 03 2012

MATHEMATICA

etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

PROG

(PARI) a(n)=polcoeff(1/prod(k=1, n, (1-x^k+x*O(x^n))^(2^(k^2))), n)

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sumdiv(m, d, d*2^(d^2))*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Oct 18 2009

CROSSREFS

Cf. A002416, A034899, A158098.

Sequence in context: A350939 A239674 A306457 * A015204 A247241 A270918

Adjacent sequences: A158096 A158097 A158098 * A158100 A158101 A158102

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 08:48 EST 2022. Contains 358407 sequences. (Running on oeis4.)